3.29 \(\int \frac{\text{csch}(c+d x)}{a+b \text{sech}^2(c+d x)} \, dx\)

Optimal. Leaf size=55 \[ \frac{\sqrt{b} \tan ^{-1}\left (\frac{\sqrt{a} \cosh (c+d x)}{\sqrt{b}}\right )}{\sqrt{a} d (a+b)}-\frac{\tanh ^{-1}(\cosh (c+d x))}{d (a+b)} \]

[Out]

(Sqrt[b]*ArcTan[(Sqrt[a]*Cosh[c + d*x])/Sqrt[b]])/(Sqrt[a]*(a + b)*d) - ArcTanh[Cosh[c + d*x]]/((a + b)*d)

________________________________________________________________________________________

Rubi [A]  time = 0.081834, antiderivative size = 55, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.19, Rules used = {4133, 481, 206, 205} \[ \frac{\sqrt{b} \tan ^{-1}\left (\frac{\sqrt{a} \cosh (c+d x)}{\sqrt{b}}\right )}{\sqrt{a} d (a+b)}-\frac{\tanh ^{-1}(\cosh (c+d x))}{d (a+b)} \]

Antiderivative was successfully verified.

[In]

Int[Csch[c + d*x]/(a + b*Sech[c + d*x]^2),x]

[Out]

(Sqrt[b]*ArcTan[(Sqrt[a]*Cosh[c + d*x])/Sqrt[b]])/(Sqrt[a]*(a + b)*d) - ArcTanh[Cosh[c + d*x]]/((a + b)*d)

Rule 4133

Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With[{ff = F
reeFactors[Cos[e + f*x], x]}, -Dist[ff/f, Subst[Int[((1 - ff^2*x^2)^((m - 1)/2)*(b + a*(ff*x)^n)^p)/(ff*x)^(n*
p), x], x, Cos[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[(m - 1)/2] && IntegerQ[n] && IntegerQ[p
]

Rule 481

Int[((e_.)*(x_))^(m_.)/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> -Dist[(a*e^n)/(b*c -
a*d), Int[(e*x)^(m - n)/(a + b*x^n), x], x] + Dist[(c*e^n)/(b*c - a*d), Int[(e*x)^(m - n)/(c + d*x^n), x], x]
/; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LeQ[n, m, 2*n - 1]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\text{csch}(c+d x)}{a+b \text{sech}^2(c+d x)} \, dx &=-\frac{\operatorname{Subst}\left (\int \frac{x^2}{\left (1-x^2\right ) \left (b+a x^2\right )} \, dx,x,\cosh (c+d x)\right )}{d}\\ &=-\frac{\operatorname{Subst}\left (\int \frac{1}{1-x^2} \, dx,x,\cosh (c+d x)\right )}{(a+b) d}+\frac{b \operatorname{Subst}\left (\int \frac{1}{b+a x^2} \, dx,x,\cosh (c+d x)\right )}{(a+b) d}\\ &=\frac{\sqrt{b} \tan ^{-1}\left (\frac{\sqrt{a} \cosh (c+d x)}{\sqrt{b}}\right )}{\sqrt{a} (a+b) d}-\frac{\tanh ^{-1}(\cosh (c+d x))}{(a+b) d}\\ \end{align*}

Mathematica [C]  time = 0.848711, size = 232, normalized size = 4.22 \[ \frac{\frac{\sqrt{b} \tan ^{-1}\left (\frac{\sinh (c) \tanh \left (\frac{d x}{2}\right ) \left (\sqrt{a}-i \sqrt{a+b} \sqrt{(\cosh (c)-\sinh (c))^2}\right )+\cosh (c) \left (\sqrt{a}-i \sqrt{a+b} \sqrt{(\cosh (c)-\sinh (c))^2} \tanh \left (\frac{d x}{2}\right )\right )}{\sqrt{b}}\right )}{\sqrt{a}}+\frac{\sqrt{b} \tan ^{-1}\left (\frac{\sinh (c) \tanh \left (\frac{d x}{2}\right ) \left (\sqrt{a}+i \sqrt{a+b} \sqrt{(\cosh (c)-\sinh (c))^2}\right )+\cosh (c) \left (\sqrt{a}+i \sqrt{a+b} \sqrt{(\cosh (c)-\sinh (c))^2} \tanh \left (\frac{d x}{2}\right )\right )}{\sqrt{b}}\right )}{\sqrt{a}}+\log \left (\sinh \left (\frac{1}{2} (c+d x)\right )\right )-\log \left (\cosh \left (\frac{1}{2} (c+d x)\right )\right )}{d (a+b)} \]

Antiderivative was successfully verified.

[In]

Integrate[Csch[c + d*x]/(a + b*Sech[c + d*x]^2),x]

[Out]

((Sqrt[b]*ArcTan[((Sqrt[a] - I*Sqrt[a + b]*Sqrt[(Cosh[c] - Sinh[c])^2])*Sinh[c]*Tanh[(d*x)/2] + Cosh[c]*(Sqrt[
a] - I*Sqrt[a + b]*Sqrt[(Cosh[c] - Sinh[c])^2]*Tanh[(d*x)/2]))/Sqrt[b]])/Sqrt[a] + (Sqrt[b]*ArcTan[((Sqrt[a] +
 I*Sqrt[a + b]*Sqrt[(Cosh[c] - Sinh[c])^2])*Sinh[c]*Tanh[(d*x)/2] + Cosh[c]*(Sqrt[a] + I*Sqrt[a + b]*Sqrt[(Cos
h[c] - Sinh[c])^2]*Tanh[(d*x)/2]))/Sqrt[b]])/Sqrt[a] - Log[Cosh[(c + d*x)/2]] + Log[Sinh[(c + d*x)/2]])/((a +
b)*d)

________________________________________________________________________________________

Maple [A]  time = 0.051, size = 67, normalized size = 1.2 \begin{align*}{\frac{b}{d \left ( a+b \right ) }\arctan \left ({\frac{1}{4} \left ( 2\, \left ( a+b \right ) \left ( \tanh \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+2\,a-2\,b \right ){\frac{1}{\sqrt{ab}}}} \right ){\frac{1}{\sqrt{ab}}}}+{\frac{1}{d \left ( a+b \right ) }\ln \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csch(d*x+c)/(a+b*sech(d*x+c)^2),x)

[Out]

1/d*b/(a+b)/(a*b)^(1/2)*arctan(1/4*(2*(a+b)*tanh(1/2*d*x+1/2*c)^2+2*a-2*b)/(a*b)^(1/2))+1/d/(a+b)*ln(tanh(1/2*
d*x+1/2*c))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\frac{\log \left ({\left (e^{\left (d x + c\right )} + 1\right )} e^{\left (-c\right )}\right )}{a d + b d} + \frac{\log \left ({\left (e^{\left (d x + c\right )} - 1\right )} e^{\left (-c\right )}\right )}{a d + b d} + 2 \, \int \frac{b e^{\left (3 \, d x + 3 \, c\right )} - b e^{\left (d x + c\right )}}{a^{2} + a b +{\left (a^{2} e^{\left (4 \, c\right )} + a b e^{\left (4 \, c\right )}\right )} e^{\left (4 \, d x\right )} + 2 \,{\left (a^{2} e^{\left (2 \, c\right )} + 3 \, a b e^{\left (2 \, c\right )} + 2 \, b^{2} e^{\left (2 \, c\right )}\right )} e^{\left (2 \, d x\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)/(a+b*sech(d*x+c)^2),x, algorithm="maxima")

[Out]

-log((e^(d*x + c) + 1)*e^(-c))/(a*d + b*d) + log((e^(d*x + c) - 1)*e^(-c))/(a*d + b*d) + 2*integrate((b*e^(3*d
*x + 3*c) - b*e^(d*x + c))/(a^2 + a*b + (a^2*e^(4*c) + a*b*e^(4*c))*e^(4*d*x) + 2*(a^2*e^(2*c) + 3*a*b*e^(2*c)
 + 2*b^2*e^(2*c))*e^(2*d*x)), x)

________________________________________________________________________________________

Fricas [B]  time = 2.88902, size = 1461, normalized size = 26.56 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)/(a+b*sech(d*x+c)^2),x, algorithm="fricas")

[Out]

[1/2*(sqrt(-b/a)*log((a*cosh(d*x + c)^4 + 4*a*cosh(d*x + c)*sinh(d*x + c)^3 + a*sinh(d*x + c)^4 + 2*(a - 2*b)*
cosh(d*x + c)^2 + 2*(3*a*cosh(d*x + c)^2 + a - 2*b)*sinh(d*x + c)^2 + 4*(a*cosh(d*x + c)^3 + (a - 2*b)*cosh(d*
x + c))*sinh(d*x + c) + 4*(a*cosh(d*x + c)^3 + 3*a*cosh(d*x + c)*sinh(d*x + c)^2 + a*sinh(d*x + c)^3 + a*cosh(
d*x + c) + (3*a*cosh(d*x + c)^2 + a)*sinh(d*x + c))*sqrt(-b/a) + a)/(a*cosh(d*x + c)^4 + 4*a*cosh(d*x + c)*sin
h(d*x + c)^3 + a*sinh(d*x + c)^4 + 2*(a + 2*b)*cosh(d*x + c)^2 + 2*(3*a*cosh(d*x + c)^2 + a + 2*b)*sinh(d*x +
c)^2 + 4*(a*cosh(d*x + c)^3 + (a + 2*b)*cosh(d*x + c))*sinh(d*x + c) + a)) - 2*log(cosh(d*x + c) + sinh(d*x +
c) + 1) + 2*log(cosh(d*x + c) + sinh(d*x + c) - 1))/((a + b)*d), -(sqrt(b/a)*arctan(1/2*(a*cosh(d*x + c)^3 + 3
*a*cosh(d*x + c)*sinh(d*x + c)^2 + a*sinh(d*x + c)^3 + (a + 4*b)*cosh(d*x + c) + (3*a*cosh(d*x + c)^2 + a + 4*
b)*sinh(d*x + c))*sqrt(b/a)/b) - sqrt(b/a)*arctan(1/2*(a*cosh(d*x + c) + a*sinh(d*x + c))*sqrt(b/a)/b) + log(c
osh(d*x + c) + sinh(d*x + c) + 1) - log(cosh(d*x + c) + sinh(d*x + c) - 1))/((a + b)*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{csch}{\left (c + d x \right )}}{a + b \operatorname{sech}^{2}{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)/(a+b*sech(d*x+c)**2),x)

[Out]

Integral(csch(c + d*x)/(a + b*sech(c + d*x)**2), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)/(a+b*sech(d*x+c)^2),x, algorithm="giac")

[Out]

Exception raised: TypeError